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Avalanche exponents and corrections to scaling for a stochastic sandpile

R. Dickman* and J. M. M. Campelo
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Minas Gerais, Brazil
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We study distributions of dissipative and nondissipative avalanches in Manna’s stochastic sandpile, in one
and two dimensions. Our results lead to the following conclusions:~1! avalanche distributions, in general, do
not follow simple power laws, but rather have the formP(s);s2ts(ln s)gf(s/sc), with f a cutoff function;~2!
the exponents for sizes of dissipative avalanches in two dimensions differ markedly from the corresponding
values for the Bak-Tang-Wiesenfeld~BTW! model, implying that the BTW and Manna models belong to
distinct universality classes;~3! dissipative avalanche distributions obey finite-size scaling, unlike in the BTW
model.
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I. INTRODUCTION

Sandpile models are the prime examples of self-organ
criticality ~SOC! @1,2#, a control mechanism that forces
system with an absorbing-state phase transition to its crit
point @3,4#, leading to scale invariance in the apparent a
sence of parameters@5#. Of central interest in sandpiles ar
avalanche distributions, which are expected to exhibit sc
invariance, and the associated critical exponents. It is ge
ally assumed that avalanche size and duration distribut
follow simple power laws in the infinite-size limit, and tha
departures from such power laws reflect finite-size effe
~The finite system size leads to a rapid cutoff of the distrib
tion beyond a characteristic avalanche sizesc ; there are also
corrections to power-law scaling at the small-s end of the
distribution.! Such effects complicate the determination
critical exponents, since the estimates are sensitive to
choice of fitting interval.

Recently, Drossel showed that in the two-dimensio
~2D! Bak-Tang-Wiesenfeld~BTW! sandpile, distributions of
dissipativeavalanches~in which one or more particles leav
the system!, follow clean power laws@6#. Nondissipative
avalanche distributions must also follow power laws in t
infinite-size limit @6#, but are subject to much stronger co
rections to scaling. The avalanche exponents for the
cases are very different, and the proportion of dissipa
avalanches decreases;L21/2 with increasing system sizeL.
Thus power-law fits to the total avalanche distribution rep
sent a superposition of two distinct scaling behaviors~with
L-dependent weights!, and would appear to have no fund
mental significance.

In light of these findings, it is of interest to study dissip
tive and nondissipative events separately in the stocha
sandpile as well. Our principal results are that avalanche
tributions for Manna’s sandpile are in generalnot pure power
laws, but rather include a logarithmic correction, and that
dissipative avalanche exponents for the Manna model
quite different from those for the BTW model. The latt
serves to resolve the issue of distinct universality classes
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the two models, which has attracted considerable atten
@7,8#. A further distinction between the two models concer
finite-size scaling, which is obeyed in the Manna model,
not ~for dissipative avalanches! in the BTW sandpile@6#. In
the following section we define the model. Simulation resu
are analyzed in Sec. III, and Sec. IV presents a brief su
mary of our results, and of open questions.

II. MODEL

The version of the Manna sandpile@9# studied here is
defined on a hypercubic lattice with open boundaries: a ch
of L sites in one dimension, a square lattice ofL3L sites in
2D. The configuration is specified by the number of partic
zi , at each sitei; sites with zi>2 are active, and have a
toppling rate of unity. When sitei topples, two particles
move to randomly chosen nearest neighborsj and j 8 of i. ( j
and j 8 need not be distinct.! In one dimension we repor
results forL5500, 1000, 2000, 5000, 10 000, and 20 0
sites; in two dimensions the linear system sizes areL
5160, 320, 640, 1280, and 2560. For the largest sys
sizes our results are based on samples of about 105 ava-
lanches (106 in two dimensions!, while for the smallest sys-
tems about 107 avalanches are generated. We study
model using both parallel and sequential updating; the res
for the two dynamics show no systematic differences.

The sequential~continuous-time!, Markovian dynamics
consists of a series of toppling events at individual sites. T
next site to topple is chosen at random from a list of act
sites, which is updated following each event. The time inc
ment associated with each toppling isDt51/NA , whereNA
is the number of active sites just prior to the event. (Dt is the
mean waiting time to the next event, if we were to choo
sites blindly, instead of using a list. In this way,NA sites
topple per unit time, consistent with each active site havin
unit rate of toppling.! When there are no active sites in th
system, a particle is inserted at a randomly selected
initiating a new avalanche. In the case of parallel dynam
all active sites release two particles simultaneously. The
ticle transfers define the configuration for the next time st
©2003 The American Physical Society11-1
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III. RESULTS

We study the distributionsPs(s) and Pd(t) of avalanche
sizess and durationst; ‘‘size’’ means the number of top
plings in an avalanche~the same site may contribute mo
than once to the size!. The data are binned to equal interva
of ln s and lnt. With increasing system size, an ever larg
fraction of the avalanches are nondissipative; the fraction
dissipative avalanches decays;L21/2 in two dimensions.
~For L52560, only 2% of avalanches are dissipative.! In one
dimension, however, the decay appears to be slower, rou
;L21/4.

The morphology of avalanche distributions in sandpi
generally includes a plateaulike region for smalls or t, and a
rapidly decaying portion for large events; between these l
iting regimes there is a power-law-like interval.~The oscil-
lations that sometimes appear at smalls can be understood in
terms of a parity effect that makes small avalanches m
likely to have anevennumber of topplings.! The power-law
interval is expected to grow with system size, so that
probability distribution in the second and third regimes f
lows:

Ps~s!5s2tsf s~s/sc!, ~1!

where f s is a scaling function that decays rapidly when
argument is>1, and the cutoff sizesc;LDs. For s!sc , the
scaling function takes a constant valuef 0. @A similar expres-
sion is anticipated forPd(t).# Analysis usually consists in
selecting~in a plot ofPs versuss on log scales! a reasonably
linear portion, and performing a linear regression to the d
to determinets .

Figure 1 illustrates the problematic nature of this pro
dure. We have plotted the size distribution of nondissipat
avalanches in two dimensions~with the parallel update
scheme!, along with a polynomial fit to the data; the deriv

FIG. 1. Main graph: avalanche size distribution for the tw
dimensional model,L51280; the data points are simulation resu
and the superposed smooth curve a cubic fit to the data on
interval 4, ln s,13. Inset: estimate for the slope2t of the cubic
fit, versus lns.
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tive of the latter,2t, is shown in the inset. Evidently we
may have our choice oft values ranging from 1.25 to 1.41

Any hope of extracting simple, power-law scaling from
distribution of the kind shown in Fig. 1~which is, in fact,
typical of both size and duration distributions for nondis
pative avalanches, regardless of system size or dimens!,
hinges on finding a suitable correction to scaling term.
natural choice, based on experience with critical phenome
would be to include a factor of form (12as2D) on the right-
hand side~rhs! of Eq. ~1!. Attempts to fit such a form to the
data consistently yield values ofD very near zero, suggestin
instead a logarithmic correction to scaling, so that Eq.~1!
becomes

Ps~s!5s2ts~ ln s!g f s~s/sc!. ~2!

This expression may be further generalized by writing
logarithmic term as ln(s/s0); for reasons explained below, w
have sets051 in the present analysis.

We find that good fits to nondissipative avalanche dis
butions can only be obtained including the logarithmic c
rection. Our analysis consists in~1! making a preliminary
estimate of the fitting interval@x0 ,x1# ~herex[ ln s); ~2! ad-
justing parameterst andg so as to minimize the variance o
f * 5stPs(s)/(ln s)g on the interval~ideally f * would be con-
stant and the variance zero!; ~3! checking for any systematic
trend in f * , and refining the fitting interval accordingly. I
practice, we use the largest possible interval, excluding
small-s plateau regime and the large-s cutoff. For each kind
of distribution, we use the samex0 for each system size
while x1 increases linearly with lnL.

Figure 2 shows the result of this analysis, usingt
51.386 andg50.683, for the data shown in Fig. 1.f * fluc-
tuates about a constant value over the optimum fitting in
val, which in this case turns out to be@2.8,10.3#. ~The de-
rivative t evaluated as in Fig. 1 varies between 1.18 and 1
on this interval.! For comparison we show the result of
pure power-law fit using the estimatets51.25@8#. The latter
yields a strongly curved functionf * (x), showing the inad-
equacy of a simple power law.

he

FIG. 2. Plot of f * 5stPs(s)/(ln s)g versus lns for the data
shown in Fig. 1. Lower curve, best fit for 3, ln s,10 using t
51.385 andg50.672; upper curve, pure power-law fit usingt
51.25.
1-2
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The best-fit parameters for sizes of nondissipative a
lanches in two dimensions are listed in Table I, with the fin
row indicating the result of an extrapolation to infinite si
~the data fall close to a straight line when plotted vers
L21/2). The parameters vary considerably withL, but in a
systematic manner. Our estimatets,n51.30(1) ~here the
subscript denotes size, nondissipative; figures in parenth
denote uncertainties! is consistent with previous estimates
1.28~2! @9#, 1.25~2! @8#, 1.27~1! @7#, and 1.28~1! @10#. ~Note
that these studies include both dissipative and nondissipa
avalanches in the analysis, which leads to a smaller expo
estimate, sincet is smaller for dissipative avalanches th
for nondissipative ones.! Another important conclusion from
the data in Table I is that the logarithmic correctiondoes not
disappearas L→`. The asymptotic avalanche distributio
while scale invariant, does not follow a simple power law

The duration distribution for nondissipative avalanches
2D, and both size and duration distributions in 1D, follo
the pattern described above. In each instance the best-fi
rameterst andg decrease systematically withL, leading to
the exponent estimates listed in Table II. Also listed are
exponentsD governing the mean size and duration, defin
via s̄n;LDs,n ~and similarly for the mean avalanche durati
t̄ n;LDd,n).

For dissipativeavalanches, some intriguing differenc
appear. In 2D, the size distributions can be fit to high ac
racy usingg50.5, and the duration distributions usingg
51. Thus the logarithmic correction shows no significa
size dependence. This is reminiscent of the observatio
clean power laws for dissipative avalanches~but not for non-
dissipative ones! in the BTW model@6#. In 1D, no logarith-
mic correction is required to fit the dissipative avalanc
distributions. ~In all other cases,g approaches a nonzer
limiting value asL→`). Finally, the best-fit values fort

TABLE I. Best-fit parameters for the distribution of sizes
nondissipative avalanches in two dimensions. The final line gi
estimated values forL→`.

L t g

160 1.570 1.252
320 1.486 1.027
640 1.425 0.821
1280 1.389 0.696
2560 1.364 0.592
Ext. 1.302~10! 0.356~10!

TABLE II. Best estimates for exponents associated with dis
butions of sizes~s! and durations~d! of nondissipative avalanch
distributions in one and two dimensions.

Case t g D

s, 1D 1.11~2! 0.9~2! 1.92~1!

d, 1D 1.18~2! 1.45~10! 1.23~1!

s, 2D 1.30~1! 0.36~1! 1.94~2!

d, 2D 1.55~4! 0.85~6! 0.72~1!
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show much less size dependence than in the nondissip
case. For avalanche sizes in 2D, for example, we findt
51.004, 0.988, 0.985, 0.978, and 0.975, forL
5160, . . .,2560, respectively. In one dimension the exp
nent estimates for dissipative avalanches show no system
size dependence. Exponent values for dissipative avalanc
including Ds,d andDd,d , are listed in Table III.

We have also performed a fitting analysis allowing t
value ofs0 @mentioned in the discussion following Eq.~2!#
to vary. While inclusion of an additional parameter leads
marginally improved fits, the best-fit values ofs0 do not
differ greatly from unity, and follow no systematic trend wit
system size.~In the nondissipative case we have also tri
fixing g52 or 3, and allowings0 to vary. This leads to
essentially the same quality of fit as withs051 andg vari-
able.! In summary, we find no advantage, given the pres
data, in includings0 as a further adjustable parameter.

An important consequence of our results is that
Manna model belongs to a different universality class th
the BTW sandpile. This follows by comparing the two
dimensional Manna value,ts,d50.98(2), with the known
value of 7/9 for BTW@6#. Note also that the exponent gov
erning the mean size of dissipative avalanches isDs,d
52.74(6), while this exponent is equal to 2 for the BTW
model @6#. Our results strengthen the conclusion reached
Biham et al. @8#, on the basis of SOC sandpiles, and
Vespignaniet al. @11#, who studied ‘‘fixed energy’’ sandpiles
having closed boundaries and strictly conserved part

FIG. 3. Finite-size scaling plot of dissipative avalanche size d
tributions in one dimension,L5500, . . . ,104.

s

-

TABLE III. Best estimates for exponentt associated with dis-
tributions of sizes~s! and durations~d! of dissipative avalanche
distributions in one and two dimensions, withg fixed at the indi-
cated value. Note the absence of a logarithmic correction in 1D

Case t g D

s, 1D 0.637~2! 0 2.20~1!

d, 1D 0.465~5! 0 1.47~1!

s, 2D 0.98~2! 1/2 2.74~6!

d, 2D 0.965~5! 1 1.42~1!
1-3
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number. The difference in universality classes is difficult
distinguish on the basis of total avalanche distributions@7#,
due to the similarity of the exponents for nondissipative a
lanches in the two models.

In the 2D case, exponentsts,d andtd,d are so similar, and
so near unity, that one might conjecture that they are b
equal to 1. It is therefore useful to determine the relat
between sizes and durations of dissipative avalanches, w
is expected to follow a power law,t;sxd. A study usingL
52560 yieldsxd50.57(1). Recalling the scaling relationx
5(12ts)/(12td) @9#, we see thattd,d,ts,d in this case.
~The values quoted in Table III yieldxd50.6(6); theuncer-
tainty is too great to permit a meaningful comparison.!

In the one-dimensional case,td,d andts,d are sufficiently
different from unity that a quantitative comparison is po
sible. Simulations (L5104) yield xd50.681(5), while (1
2ts)/(12td)50.682(6). Fornondissipative avalanches th
comparisons are, in 1D,xn50.692(5) ~simulation! and
0.47~27! ~scaling!; in 2D, xn50.593(5)~simulation!, 0.55~6!
~scaling!.

In Figs. 3 and 4 we show size distributions for dissipat
avalanches in one and two dimensions, respectively. T
are more linear over a larger interval, compared with
nondissipative case. In the 1D system, the terminus of
power-law regime is signaled not by a decaying probabil
but rather by a slight excess of large events. This exces
large dissipative events appears to be necessary for the
system to maintain a stationary mean particle density. S
t,1 for dissipative avalanches~as is also the case for th
BTW model@6#!, distributionsPs andPd will not be normal-
izable if the scaling functionf in Eq. ~2! attains an

FIG. 4. Finite-size scaling plot of dissipative avalanche size d
tributions in two dimensions,L5160, . . .,2560.
i,
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L-independent limiting value asL→`. In fact, we find that
f 0;L20.8 in one dimension, and;L20.2 in 2D.

A further important difference between the BTW an
Manna sandpiles concerns finite-size scaling~FSS!, which
was shown to be violated for dissipative avalanches in
BTW model @6#. By contrast, we find that FSS holds fo
dissipative avalanches in the Manna model, as shown
Figs. 3 and 4.~That the total avalanche distribution obe
FSS has been demonstrated many times@9,10#.! In each case,
we achieve a clean data collapse by scaling the sizes to its
mean, which is proportional toLDs,d. In one dimension, the
probability must be multiplied byLDs,d to ensure collapse, so
that the avalanche distribution has the scaling formPs(s)
5L2DP(L2Ds). In two dimensions, however, the probab
ity must be multiplied byL2.88 to achieve a collapse.

Finally, we have examined the form of the large-s cutoff
~or large-t cutoff, in the case of the duration!, by studying
f 5stPs(s)/(ln s)g. This function is well approximated byf
5A exp(2@(s/sc)1b(s/sc)

2#).

IV. SUMMARY

We find that for Manna’s stochastic sandpile, simp
power-law avalanche distributions are the exception rat
than the rule, and are observed only for nondissipative a
lanches in the one-dimensional system. In all other case
logarithmic correction is present.~Since our conclusions ar
based entirely on simulation data, we cannot rule out ot
correction to scaling forms, but it is evident that the corre
tion decays very slowly.! Our data indicate that the correc
tion persists in the infinite-size limit.

Analyzing the exponent estimates for a series of sys
sizes, we obtain estimates for the exponentst that are con-
sistent with scaling and~in the 2D nondissipative case! with
previous simulations. Our results forts,d and Ds,d clearly
place the Manna and BTW models in distinct universal
classes. Our study highlights the importance of analyz
dissipative and nondissipative avalanches separately.

Our results raise several questions regarding avalan
distributions. First, what is the physical origin and theoreti
basis for the logarithmic correction? Second, do such cor
tions appear in other models exhibiting SOC? Finally, wh
are the essential features of the Manna and BTW mod
leading to their rather different scaling properties? We ho
to investigate these issues in future work.
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