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Avalanche exponents and corrections to scaling for a stochastic sandpile
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We study distributions of dissipative and nondissipative avalanches in Manna’s stochastic sandpile, in one
and two dimensions. Our results lead to the following conclusi@hsavalanche distributions, in general, do
not follow simple power laws, but rather have the foR(s) ~s™ "s(In s)”f(ds,), with f a cutoff function;(2)
the exponents for sizes of dissipative avalanches in two dimensions differ markedly from the corresponding
values for the Bak-Tang-WiesenfelTW) model, implying that the BTW and Manna models belong to
distinct universality classe$3) dissipative avalanche distributions obey finite-size scaling, unlike in the BTW
model.
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[. INTRODUCTION the two models, which has attracted considerable attention
[7,8]. A further distinction between the two models concerns
Sandpile models are the prime examples of self-organizetinite-size scaling, which is obeyed in the Manna model, but
criticality (SOQ [1,2], a control mechanism that forces a not (for dissipative avalanchgén the BTW sandpild6]. In
system with an absorbing-state phase transition to its criticahe following section we define the model. Simulation results
point [3,4], leading to scale invariance in the apparent ab-are analyzed in Sec. Ill, and Sec. IV presents a brief sum-
sence of parametef§]. Of central interest in sandpiles are mary of our results, and of open questions.
avalanche distributions, which are expected to exhibit scale
invariance, and the associated critical exponents. It is gener-
ally assumed that avalanche size and duration distributions II. MODEL
follow simple power laws in the infinite-size limit, and that
departures from such power laws reflect finite-size effects. The version of the Manna sandpil®] studied here is
(The finite system size leads to a rapid cutoff of the distribu-defined on a hypercubic lattice with open boundaries: a chain
tion beyond a characteristic avalanche sizethere are also  of L sites in one dimension, a square latticeLof L sites in
corrections to power-law scaling at the smalend of the  2D. The configuration is specified by the number of particles
distribution) Such effects complicate the determination ofz = at each sitd; sites withz;=2 areactive and have a
critipal exponents, since the estimates are sensitive to thgppling rate of unity. When sité topples, two particles
choice of fitting interval. _ _ ~ move to randomly chosen nearest neighjaaadj’ of i. (]
Recently, Drossel showed that in the two-dlmen5|onalandj, need not be distindt.In one dimension we report
(2D) Bak-Tang-WiesenfeldBTW) sandpile, distributions of o 1t forl =500, 1000, 2000, 5000, 10000, and 20000
dissipativeavalanchegin which one or more particles leave sites: in two dimensions the linear system sizes hre

the system follow clean power lawg6]. Nondissipative ~
avalanche distributions must also follow power laws in the . 160, 320, 64I1t0 128% an: 2560. Fcl)r thef Iatr)g%f;y%ystem
infinite-size limit[6], but are subject to much stronger cor- slzes our resufts are based on samples of abo )

rections to scaling. The avalanche exponents for the qwignches (1®inéwo dimensions while for the smallest sys-
cases are very different, and the proportion of dissipativd®M$ about 10 avalanches are generated. We study the
avalanches decreased. ~ 2 with increasing system size ~ Model using both parallel and sequential updating; the results
Thus power-law fits to the total avalanche distribution reprefor the two dynamics show no systematic differences.

sent a superposition of two distinct scaling behavigvith The sequentialcontinuous-timg Markovian dynamics
L-dependent weightsand would appear to have no funda- consists of a series of toppling events at individual sites. The
mental significance. next site to topple is chosen at random from a list of active

In light of these findings, it is of interest to study dissipa- sites, which is updated following each event. The time incre-
tive and nondissipative events separately in the stochastiment associated with each topplingA$=1/N,, whereNy
sandpile as well. Our principal results are that avalanche didgs the number of active sites just prior to the evedtt {s the
tributions for Manna’s sandpile are in genemnak pure power mean waiting time to the next event, if we were to choose
laws, but rather include a logarithmic correction, and that thesites blindly, instead of using a list. In this wal, sites
dissipative avalanche exponents for the Manna model ar®pple per unit time, consistent with each active site having a
quite different from those for the BTW model. The latter unit rate of toppling. When there are no active sites in the
serves to resolve the issue of distinct universality classes f@®ystem, a particle is inserted at a randomly selected site,

initiating a new avalanche. In the case of parallel dynamics
all active sites release two particles simultaneously. The par-
*Email address: dickman@fisica.ufmg.br ticle transfers define the configuration for the next time step.
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FIG. 2. Plot of f*=s"P(s)/(Ins)” versus Irs for the data
‘ . . shown in Fig. 1. Lower curve, best fit for<38In s<10 using 7
'300 5 10 15 20 =1.385 andy=0.672; upper curve, pure power-law fit using

=1.25.
Ins

FIG. 1. Main graph: avalanche size distribution for the two- tive of the latter,— r, is shown in the inset. Evidently we
dimensional model.=1280; the data points are simulation results may have our choice of values ranging from 1.25 to 1.41!
gnd the superposed smooth_curve a cubic fit to the data on the Any hope of extracting simple, power-law scaling from a
mterval 4<In s<13. Inset: estimate for the sloper of the cubic distribution of the kind shown in Fig. {which is, in fact,
fit, versus Ire. typical of both size and duration distributions for nondissi-
pative avalanches, regardless of system size or dimension
hinges on finding a suitable correction to scaling term. A

We study the distribution®4(s) and P4(t) of avalanche natural choice, based on experience with critical phenomena,
sizess and durationg; “size” means the number of top- Would be to include a factor of form (tas™*) on the right-
plings in an avalanchéhe same site may contribute more hand side(rhs) of Eqg. (1). Attempts to fit such a form to the
than once to the sizeThe data are binned to equal intervals data consistently yield values afvery near zero, suggesting
of Ins and Int. With increasing system size, an ever largerinstead a logarithmic correction to scaling, so that Eq.
fraction of the avalanches are nondissipative; the fraction opecomes
dissipative avalanches decaysL %2 in two dimensions.

(For L =.2560, only 2% of avalanches are dissipative.one P(s)=5""s(Ins)”f(s/s,). )
dlme?/ilon, however, the decay appears to be slower, roughly
~L~%

The morphology of avalanche distributions in sandpilesThis expression may be further generalized by writing the
generally includes a plateaulike region for snsafir t, and a  logarithmic term as Irg(s); for reasons explained below, we
rapidly decaying portion for large events; between these limhave ses,=1 in the present analysis.
iting regimes there is a power-law-like intervélhe oscil- We find that good fits to nondissipative avalanche distri-
lations that sometimes appear at snsalhn be understood in butions can only be obtained including the logarithmic cor-
terms of a parity effect that makes small avalanches moreection. Our analysis consists 1) making a preliminary
likely to have anevennumber of topplings.The power-law  estimate of the fitting intervdix,,x;] (herex=Ins); (2) ad-
interval is expected to grow with system size, so that thgusting parameters and+y so as to minimize the variance of
probability distribution in the second and third regimes fol- f* =s"P4(s)/(In s)” on the intervalideally f* would be con-
lows: stant and the variance zerd3) checking for any systematic

trend inf*, and refining the fitting interval accordingly. In
Ps(s)=s""sf4(s/se), (1) practice, we use the largest possible interval, excluding the
smalls plateau regime and the largezutoff. For each kind
wherefg is a scaling function that decays rapidly when its of distribution, we use the samg, for each system size,
argument is=1, and the cutoff size,~LPs. Fors<s, the  while x, increases linearly with Ib.
scaling function takes a constant valige [A similar expres- Figure 2 shows the result of this analysis, usimg
sion is anticipated foiP4(t).] Analysis usually consists in =1.386 andy=0.683, for the data shown in Fig. ¥ fluc-
selecting(in a plot of P versuss on log scalesa reasonably tuates about a constant value over the optimum fitting inter-
linear portion, and performing a linear regression to the dataal, which in this case turns out to §€.8,10.3. (The de-
to determiners. rivative 7 evaluated as in Fig. 1 varies between 1.18 and 1.31

Figure 1 illustrates the problematic nature of this proce-on this intervall For comparison we show the result of a
dure. We have plotted the size distribution of nondissipativepure power-law fit using the estimatg=1.25[8]. The latter
avalanches in two dimension@with the parallel update vyields a strongly curved functiof* (x), showing the inad-
schemg, along with a polynomial fit to the data; the deriva- equacy of a simple power law.

Ill. RESULTS
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TABLE I. Best-fit parameters for the distribution of sizes of =~ TABLE Ill. Best estimates for exponent associated with dis-
nondissipative avalanches in two dimensions. The final line givedributions of sizes(s) and durations(d) of dissipative avalanche
estimated values fdr — . distributions in one and two dimensions, wijhfixed at the indi-
cated value. Note the absence of a logarithmic correction in 1D.

L T b%
Case T b D

160 1.570 1.252

320 1.486 1.027 s, 1D 0.6372) 0 2.2q1)
640 1.425 0.821 d, 1D 0.46%5) 0 1.471)
1280 1.389 0.696 s, 2D 0.982) 12 2.746)
2560 1.364 0.592 d, 2D 0.96%5) 1 1.421)
Ext. 1.30210) 0.35610)

show much less size dependence than in the nondissipative

The best-fit parameters for sizes of nondissipative avacase. For avalanche sizes in 2D, for example, we find
lanches in two dimensions are listed in Table I, with the final=1.004, 0.988, 0.985, 0.978, and 0.975, fadc
row indicating the result of an extrapolation to infinite size =160, .. .,2560, respectively. In one dimension the expo-
(the data fall close to a straight line when plotted versusent estimates for dissipative avalanches show no systematic
L~Y?). The parameters vary considerably with but in a  size dependence. Exponent values for dissipative avalanches,
systematic manner. Our estimatg,=1.30(1) (here the includingDgq andDyq4, are listed in Table IIl.
subscript denotes size, nondissipative; figures in parentheses We have also performed a fitting analysis allowing the
denote uncertainti¢ss consistent with previous estimates of value ofsy [mentioned in the discussion following E®)]
1.282) [9], 1.252) [8], 1.271) [7], and 1.281) [10]. (Note  to vary. While inclusion of an additional parameter leads to
that these studies include both dissipative and nondissipativearginally improved fits, the best-fit values ef do not
avalanches in the analysis, which leads to a smaller exponediffer greatly from unity, and follow no systematic trend with
estimate, sincer is smaller for dissipative avalanches than system size(In the nondissipative case we have also tried
for nondissipative onesAnother important conclusion from fixing y=2 or 3, and allowingsy to vary. This leads to
the data in Table | is that the logarithmic correctimes not  essentially the same quality of fit as wisg=1 andy vari-
disappearasL—«. The asymptotic avalanche distribution, able) In summary, we find no advantage, given the present
while scale invariant, does not follow a simple power law. data, in includingsy as a further adjustable parameter.

The duration distribution for nondissipative avalanches in  An important consequence of our results is that the
2D, and both size and duration distributions in 1D, follow Manna model belongs to a different universality class than
the pattern described above. In each instance the best-fit pgie BTW sandpile. This follows by comparing the two-
rametersr and y decrease systematically with leading to  dimensional Manna valuezs 4=0.982), with the known
the exponent estimates listed in Table II. Also listed are thevalue of 7/9 for BTW[6]. Note also that the exponent gov-
exponentD governing the mean size and duration, definederning the mean size of dissipative avalanchesDisy
via s,~LPsn (and similarly for the mean avalanche duration =2.746), while this exponent is equal to 2 for the BTW
T, ~LPan), model[6]. Our results strengthen the conclusion reached by

Biham et al. [8], on the basis of SOC sandpiles, and by
Vespignaniet al.[11], who studied “fixed energy” sandpiles
having closed boundaries and strictly conserved particle

For dissipative avalanches, some intriguing differences
appear. In 2D, the size distributions can be fit to high accu
racy usingy=0.5, and the duration distributions using
=1. Thus the logarithmic correction shows no significant
size dependence. This is reminiscent of the observation of
clean power laws for dissipative avalancliest not for non-
dissipative ongsin the BTW model[6]. In 1D, no logarith-
mic correction is required to fit the dissipative avalanche
distributions. (In all other cases;y approaches a nonzero
limiting value asL—). Finally, the best-fit values for

10—

In(LP P)

TABLE Il. Best estimates for exponents associated with distri-
butions of sizeqs) and durationgd) of nondissipative avalanche
distributions in one and two dimensions.

Case T y D

s, 1D 1.112) 0.92) 1.921) -15 -10 45 0

d, 1D 1.182) 1.4510) 1.231) In (s/LP)

s, 2D 1.301) 0.361) 1.942)

d, 2D 1.554) 0.856) 0.721) FIG. 3. Finite-size scaling plot of dissipative avalanche size dis-
tributions in one dimensior,, =500, . . . ,16.
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20 . . . L-independent limiting value ds— . In fact, we find that
fo~L " %8in one dimension, aneé-L~%2in 2D.

A further important difference between the BTW and
Manna sandpiles concerns finite-size scal{®$S, which
was shown to be violated for dissipative avalanches in the
BTW model [6]. By contrast, we find that FSS holds for
dissipative avalanches in the Manna model, as shown in
Figs. 3 and 4(That the total avalanche distribution obeys
FSS has been demonstrated many tif®e%0].) In each case,
we achieve a clean data collapse by scaling the sizeits
mean, which is proportional thPsd. In one dimension, the
probability must be multiplied by Psd to ensure collapse, so
that the avalanche distribution has the scaling fdPgis)
=L~ PP(L"Ps). In two dimensions, however, the probabil-

In(s/L®) ity must be multiplied byL?®8to achieve a collapse.
o ) o ) ) Finally, we have examined the form of the largeutoff

_ FIQ. 4._F|n|te-s_|ze scghng plot of dissipative avalanche size dls—(or larget cutoff, in the case of the duratignby studying

tributions in two dimension, =160, . . .,2560. f=s"P(s)/(Ins)”. This function is well approximated bf
=Aexp(—[(¥/s)+b(s)]).

number. The difference in universality classes is difficult to
distinguish on the basis of total avalanche distributipris IV. SUMMARY
due to the similarity of the exponents for nondissipative ava-
lanches in the two models.

In(L%% p)

We find that for Manna’s stochastic sandpile, simple
d power-law avalanche distributions are the exception rather

In the 2D case, exponentg 4 and 74 4 are so similar, an AL
SO near unity, that one might conjecture that they are botIIlhan the_rule, and are obse_rved only for nondissipative ava-
lanches in the one-dimensional system. In all other cases a

equal to 1. It is therefore useful to determine the reIatioDb

between sizes and durations of dissipative avalanches, whi Rgarlthmlq correction Is p.reser(lSmce our conclusions are
is expected to follow a power law~s™. A study usingL ased entirely on simulation data, we cannot rule out other

- : _ . . ; correction to scaling forms, but it is evident that the correc-
:(215 EOTSB;'/E(T ixq‘fd) %37(\,1\,33 Esgiuggdt:i chalilrr]lgihrizla(i:t;)sll. tion decays very slowly.Our data indicate that the correc-

(The values quoted in Table Il yiel=0.6(6); theuncer- tlolﬁzlrszlisrtls Théhg;ngrr:gi:[sgsetirl;]n;!c;s for a series of system
tainty is too great to permit a meaningful comparigon. yzing b Y

In the one-dimensional casey 4 and 7 4 are sufficiently SIzes, we obtaln_ estimates for the expon_entgat are con-
different from unity that a quahtitative bomparison is pos-S'Ste.nt W'th. Sca'”.‘g andn the 2D nondissipative caswith
sible. Simulations I(=10%) yield x,=0.6815), while (1  P'éVious simulations. Our resuilts fog q and Dsq clearly
—75)/(1—14)=0.6846). Fornondissipative avalanches the place the Manna and' BTW model§ in distinct unlversal!ty
comparisons are, in 1Dx,=0.692(5) (simulation and classes. Our study highlights the importance of analyzing

L o : . dissipative and nondissipative avalanches separately.
?sg(lﬁwg (scaling; in 2D, X, =0.593(5)(simulation), 0.536) Our results raise several questions regarding avalanche

In Figs. 3 and 4 we show size distributions for dissipativedistributions. First,_ wha}t is the p_hysical origin and theoretical
avalanchés in one and two dimensions, respectively. ThebaSIS for the I'ogar|thm|c correctlo'n?_Second, dO.SUCh correc-
are more linear over a larger interval (’:ompared Wifh the on's appear ln_other models exhibiting SOC? Finally, which

Co ' : are the essential features of the Manna and BTW models
nondissipative case. In the 1D system, the terminus of th

. . : X e
power-law regime is signaled not by a decaying probabilityFeadmg to their rather different scaling properties? We hope

but rather by a slight excess of large events. This excess 5? investigate these issues in future work.

large dissipative events appears to be necessary for the 1D
system to maintain a stationary mean particle density. Since
7<1 for dissipative avalanchgss is also the case for the  We thank Deepak Dhar, Alessandro Vespignani, and Kim
BTW model[6]), distributionsPg andPy4 will not be normal-  Christensen for helpful comments. This work was supported
izable if the scaling functionf in Eqg. (2) attains an by CNPq and CAPES, Brazil.
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